BIOLOGICAL EFFECTS OF RADIATION

- Natural background radiation comes from three sources:
 - Cosmic Radiation
 - Terrestrial Radiation
 - Internal Radiation

- Cosmic Radiation
 - Sun and stars send constant stream of cosmic radiation to Earth
 - Like steady drizzle of rain
 - Differences in certain variables can change the amount (or dose) of cosmic radiation that we receive.
 - Elevation
 - Atmospheric conditions
 - Earth's magnetic field

- Terrestrial Radiation
 - The Earth itself is a source of terrestrial radiation
 - Radioactive materials exist naturally in soil and rock
 - Uranium
 - Thorium
 - Radium
 - Water contains small amounts of dissolved uranium and thorium
 - All organic matter (both plant and animal) contains radioactive carbon and potassium.

- Internal Radiation
 - All animals (including people) have internal radiation
 - Comes from radioactive potassium-40 and carbon-14 inside their bodies
 - Present from birth
 - Very minor sources of exposure to others

Man-Made Sources of Radiation

- All living things are exposed to natural background radiation
- Exposure to man-made radiation sources differs by group:
 - 1. Members of the Public (Diagnostic Xray, Nuclear Medicine Procedures)
 - 2. Occupationally Exposed Individuals (Workers)

Radiation Measurement Units

- Radioactive Material Quantity
 - Curie :: the amount of radioactive material decaying at 2.22 X 10¹² atoms per minute or 3.7 X 10¹⁰ atoms per second
 - 1 ci = 3.7×10^{10} decays per second (dps)
 - Becquerel :: the amount of radioactive material decaying at 1 decay per second
 - 1 ci = 3.7 × 10¹⁰ Bq
 - 1Bq = 1 dps

Radiation Measurement Units

- Biological Effects
 - Not fully described by decay rate of radioactive material
 - Additional factors must considered
 - Radiation type
 - Radiation energy

Radiation Measurement Units: Roentgen (R)

- Relates to gamma or x-ray interactions in air
- Relates to energy deposition in air
- Qty of x-ray or gamma radiation producing 1 esu of charge (positive or negative) in 1 cc (cm³) of dry air
 - esu = electrostatic unit of charge
 - 1 ionizing event = addition or removal of 1 electron = ±4.8 X10 ⁻¹⁰ esu
 - 1 R = 2.08 X10 ⁹ ion pairs
 - 1 R = 88 erg/gram energy deposition in air
 - erg = unit of work or energy
- Problem: Doesn't relate to biological damage.

Radiation Measurement Units: Radiation Absorbed Dose (RAD)

- Dose = Total amount of energy delivered to a specific area or organ by radiation.
- Dose rate = dose units per unit of time
- 1 RAD is an amount of any type of ionizing radiation that deposits 100 ergs/gram in tissue.
- 1 RAD = 100 ergs/gram energy deposition (tissue)
- Problem: Different types of ionizing radiation might have the same energy, but have totally different effects on tissue.

Radiation Measurement Units: Roentgen Equivalent Man (REM)

- The amount of ionizing radiation required to produce the same biological effect as one rad of high-penetration x-rays.
- Radiation dose in rem is referred to as the dose equivalent (DE)

```
DE (rem) = Dose (rad) x QF
```

- Quality Factor (QF)
 - Accounts for differences in biological effect for different types of radiation

Quality Factor

- Gamma, X-Rays, and High-Energy Beta
 - 1 rad = 1 rem
- Alpha, Proton, Neutron, and Low-Energy Beta
 - 1 rad ≠ 1 rem
 - 1 rem = 1 rad * QF

RADIATION	QUALITY FACTOR
GAMMA	1
Х	1
BETA, ELECTRON>0.03 MeV	1
BETA, ELECTRON < 0.03 MeV	1.7
THERMAL NEUTRONS	3
FAST NEUTRONS	10
PROTONS	10
ALPHA	10
HEAVY IONS	20

Different Radiation Types

- Biological effect of any radiation is related to rate at which radiation transfers energy to tissue
- Linear Energy Transfer (LET)
 - Measure of the interaction density along radiation travel path
 - Equivalent to ionization potential or stopping power of body tissue
 - Inversely proportional to radiation range
 - Short range particles like alphas have a high LET
- Most damaging types of radiation to a biological system are those with a high LET.
- High LET radiation deposits all of its energy in a short distance of travel.

Different Radiation Types

- LET increases with:
 - Increasing mass of incident radiation
 - Increasing charge of incident radiation
 - Decreasing energy of incident radiation
- In order of decreasing LET:
 - Fission fragments
 - Low mass number nuclei
 - Alpha particles
 - Protons
 - Neutrons
 - Low energy Beta, x-ray and gamma
 - High energy beta, x-ray and gamma

Cellular Effects of Radiation: Free Radical Formation

- Radical
 - An atom (either neutral or charged) with unpaired electrons that wants to join with another atom to stabilize itself
- Free radicals
 - Radicals that have not yet bonded with other atoms
 - Highly reactive atoms or chemical compounds that can alter existing state of cells
- Changes in cellular chemistry are the root causes of all the harmful effects of radiation.

Cellular Effects of Radiation: Free Radical Formation

- Direct Effect of Radiation on Cells
 - Ionization and excitation of intracellular water molecules produces free radicals
- Indirect Effect of Radiation on Cells
 - Subsequent interference of free radicals with cells not direct affected by radiation

Effects of Radiation by Biological Organization

- Molecular
 - Damage to enzymes, DNA etc. and interference with biological pathways
- Subcellular
 - Damage to cell membranes, nucleus, chromosomes etc.
- Cellular Inhibition of cell division, cell death, transformation to a malignant state

Effects of Radiation by Biological Organization

- Tissue, Organ
 - Disruption to central nervous system, bone marrow, intestinal tract
 - Induction of cancer
- Whole Animal
 - Death
 - Life shortening
- Populations
 - Changes in the genetic characteristics of individual members

Radiosensitivity

- Different cells within the body have different structures and functions
- Vary in their **radiosensitivity**
 - Susceptibility to radiation-induced damage

4 Factors Affecting Radiosensitivity

- 1. Cellular division rate
 - Rapidly dividing cells are more sensitivity to radiation damage
- 2. Cellular metabolism rate
 - Cells with high metabolism rate are more susceptible to radiation damage
- 3. Developmental stage
 - Cells in division stage are more susceptible to radiation damage
- 4. Blood / nourishment to cell
 - Normally undernourished cells reproduce less
 - Faster reproduction = more mutations

Rate of Exposure

- Biological damage decreases with decreasing dose rate
- Acute Exposure
 - High dose
 - Short exposure time
- Chronic Exposure
 - Low dose
 - Long exposure time
 - Occupational radiation exposure
 - Exposure from natural background radiation

Acute Radiation Effects: Whole Body Exposure

Dose (Rads*)	Effects
25-50	First sign of physical effects (drop in white blood cell count)
100	Threshold for vomiting (within a few hours of exposure)
320 - 360	~ 50% die within 30 days (with minimal supportive care)
480 - 540	~50 % die within 30 days (with supportive medical care)
1,000	~ 100% die within 30 days

Acute Radiation Effects: Localized Exposure

Dermal Necrosis

- Cell/tissue death due to insufficient blood flow

- Acute Epidermal Necrosis
 - Severe tissue loss
 - High-dose, low-energy beta irradiation